人工智能机器学习推荐系统项目案例实战课程视频教程下载。课程从推荐系统概述开始,详解推荐系统中两大核心算法:协同过滤与隐语义模型。使用Surprise库对电影数据集进行建模推荐,最后使用Tensorflow实现一个简易的基于隐语义模型的推荐系统。

课程目标
掌握推荐系统原理与工作方式,使用Python库进行建模。

适用人群
机器学习,数据领域工作以及要转向人工智能方向的同学们。

课程简介
课程从推荐系统概述开始,详解推荐系统中两大核心算法:协同过滤与隐语义模型。使用Surprise库对电影数据集进行建模推荐,最后使用Tensorflow实现一个简易的基于隐语义模型的推荐系统。

课程章节

第1章推荐系统工作原理
1-1系列课程概述
1-2推荐系统应用
1-3推荐系统要完成的任务
1-4相似度计算
1-5基于用户的协同过滤算法
1-6基于物品的协同过滤算法
1-7隐语义模型
1-8隐语义模型求解
1-9模型评估标准

第2章使用Surprise库建立推荐系统
2-1Surprise库简介
2-2Surprise库使用方法
2-3得出商品推荐结果

第3章使用Tensorflow构造隐语义模型
3-1使用Tensorflow构造隐语义模型
3-2模型架构
3-3损失函数定义
3-4训练网络

版权声明 1 本网站名称:淘宝源码-分享有价值的资源
2 本站永久网址:http://www.taobaoym.com/
3 本网站的文章部分内容可能来源于网络,仅供大家学习与参考,如有侵权,请联系站长 QQ956189936进行删除处理。
4 本站一切资源不代表本站立场,并不代表本站赞同其观点和对其真实性负责。
5 本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报
6 本站资源大都存储在云盘,如发现链接失效,请联系我们我们会第一时间更新。
7 如无特别声明本文即为原创文章仅代表个人观点,版权归《淘宝源码》所有,欢迎转载,转载请保留原文链接。